AES E-Library

Analog Pseudo Leslie Effect with High Grade of Repeatability

This paper describes the design of an Analog Stomp Box capable of reproducing the effect observed when a loudspeaker is rotated during operation, the so-called Leslie effect. When the loudspeaker is rotating two physical effects can be observed: The first is a variation of the amplitude because sometimes the speaker is aimed at the observer and then, after 180 degrees of rotation, the loudspeaker is aimed opposing to the observer. To recreate this variation in amplitude, a circuit called Tremolo was designed to achieve this effect. The second is the Doppler effect, which was obtained with a circuit designed to vary the phase of the signal (Vibrato). The phase variation simulates a frequency variation for the ears. Assembling these two circuits in cascade, it is obtained the Pseudo Leslie Effect. These Vibrato and Tremolo circuits receive the control signal from a Low Frequency Oscillator (LFO) which controls the effect frequency. To get a high degree of repeatability, which is not simple in analog circuits employing photocouplers, those photocoupler devices were replaced with VCAs. The photocouplers have a great variation of your optical characteristics, so it is hard to obtain the same result in a large-scale production. However, using VCAs it turns to be easily achievable. The THAT2180 IC is a VCCS, Voltage-Controlled Current Source with an exponential gain control and low signal distortion. The term Pseudo was used because, in the Leslie Effect, the rotation of the loudspeaker gives a lag of 90o between the frequency and amplitude variations. This lag has not been implemented, but the sonic result left nothing to be desired.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
AES Convention: Paper Number:
Publication Date:
Permalink: https://aes2.org/publications/elibrary-page/?id=22848


(754KB)


Download Now

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content